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The long distance between the source and the experiment and the small source

size, now available at third-generation synchrotron sources, leads to new optical

characteristics for X-ray diffraction. It is shown that, under certain conditions,

the intensity received by a point located on the exit surface of a crystal is

described by the diffraction of a locally plane wave. Each point along the surface

is in¯uenced by a plane wave with a varying departure from Bragg angle. In such

a case, it is possible to visualize the rocking curve of the crystal as a function of

the position along the exit surface. This represents a topographic method to

obtain the re¯ectivity curve of the crystal instead of the usual goniometric

method. Applications will be described in a forthcoming paper.

1. Introduction

The usual formulations of X-ray dynamical diffraction

consider two cases: either a point source located at in®nity

(plane wave) or a point source situated exactly on the

entrance surface (Kato's spherical wave) (Kato, 1960,

1961a,b). Afanas'ev & Kohn (1977) have analyzed the case of

a spherical wave impinging from a point source situated at an

arbitrary distance from the crystal. Their work pointed out

that the shape of the PendelloÈsung fringes is sensitive to the

thickness of the crystal. These fringes differ from Kato's

fringes (Kato & Lang, 1959) in the case of a thin crystal and

the authors call them anomalous PendelloÈsung fringes

(Aristov et al., 1980). The authors did not investigate the effect

of the coherence properties of the source: they used labora-

tory sources, without special arrangements.

To properly treat new-generation synchrotron sources, we

have to take the coherence properties of the source into

account. A ®rst attempt has been made by Carvalho &

Epelboin (1990), limiting their analysis to the case of an

incident white beam.

In the present work, we consider a source located at a large

distance L0 from the crystal and discuss how the diffraction

pro®le is affected by the source size (spatial coherence) and by

the wavelength bandwidth (temporal coherence). We will

explain why the crystal locally `sees' a plane wave and how the

intensity pro®le reproduces the re¯ectivity curve of the crystal

(rocking curve) with a local correspondence between position

and angular deviation from the Bragg condition. We will

underline the analogy with Fraunhofer diffraction as known

for classical optics.

2. Ideal monochromatic point source

We consider ®rst the case where the incident beam is a

spherical wave emitted by an ideal point source (an electron

oscillating at a given frequency), located at a ®nite distance

from the crystal. Using the current terminology in X-ray

dynamical theory, `spherical wave' means a point source

located on the entrance surface, a case analyzed in detail by

Kato. This holds for a conventional laboratory source, where

the source is so near to the sample that a stationary-phase

approximation is well justi®ed (Authier & Simon, 1968). This

simpli®cation is not valid for the present generation of

synchrotron sources. However, the incident wave cannot be

considered as a plane wave either. A criterion commonly used

in optics (Born & Wolf, 1983, Section 9.3) in considering the

incident wave as plane is that the distance between the

spherical wave front and its tangential plane be smaller than

�0=2:

L0����2 � �0=2; �1�
where �0 is the wavelength of incident wave, L0 is the source-

to-crystal distance and �� is the angular divergence of the

source as seen by the illuminated region of the crystal (see

Fig. 1). The source divergence �� is limited to the effective

angular acceptance of the crystal, known as the Darwin width.

Consider, as an example, an incident beam with a diver-

gence �� � 10ÿ5, i.e. the illuminated region on the crystal is

1.45 mm wide at a distance L0 � 145 m, which is the source

distance at the ID19 beamline at ESRF (European Synchro-

tron Radiation Facility), and �0 � 10ÿ10 m: the condition (1) is

far from being satis®ed.



It is convenient to express the incident spherical wave

 inc
0 r; k0� � � A exp�ÿ2�ik0r� �2�

in the form of a modulated plane wave:

 inc
0 �r; k0� � Dinc

0 �r� exp�ÿ2�ik0 � r�; �3�
where we do not explicitly specify the amplitude term A,

which is not relevant in our analysis.

Let us call O the origin of the � axis, where the Bragg

condition is satis®ed exactly for �0 (Fig. 2), r is equal to SP and

the vector k0 is along SO. The amplitude Dinc
0 of the incident

wave (3) on the entrance surface can be written in paraxial

approximation ��� � � cos �B=L0 � 1�:
Dinc

0 ��� � exp�i��cos2 �B=�0L0��2�; �4�
where �B is the Bragg angle.

Similarly, the diffracted amplitude on the exit surface is

expressed as

 h�x� � exp�ÿ2i��sin �B=�0�x�Dh�x�; �5�
where O0 is the origin of the x axis (Fig. 2).

The diffracted pseudo-amplitude Dh�x� on the exit surface

can be obtained from the pseudo-amplitude on the entrance

surface Dinc
0 ��� [equation (4)] by means of a propagator T���

given in Takagi's generalized dynamical theory, in the case of a

perfect crystal (Takagi, 1969; Authier & Simon, 1968):

Dh�x� �
Rxÿl

x�l

Dinc
0 ���T�xÿ �� d�

� R�l

ÿl

exp�i��cos2 �B=�0L0��xÿ �1�2�T��1� d�1 �6�

using (4) with �1 � xÿ �.
T is the Green function or propagator, which can be

obtained by means of the Riemann method from the Takagi±

Taupin equations in the case of a perfect crystal (Takagi,

1969); it can also be obtained in a straightforward way

(Guigay, 1999).

For a symmetrical re¯ection, this function has nonzero

values in the interval j�j< l, with l � t tan �B, where t is the

crystal thickness:

T��� �
i��k0�h=2 sin �B� exp�ÿ�i�0k0�t=cos �B��
�J0�2�k0��h�ÿh�1=2�l2 ÿ �2�1=2� j�j<l

0 elsewhere

(
�7�

where J0 is the zero-order Bessel function, k0 � 1=�0 and �0,

�h, �ÿh are the Fourier components of the susceptibility.

3. Locally plane wave

3.1. The locally plane wave approximation

The case of a spherical wave emitted by a source located at

a distance of the order of a few tens of centimetres was

considered years ago by Authier & Simon (1968). They

showed that the exponential term in the formula (6) oscillates

so rapidly that the integral can be evaluated by the stationary-

phase method. In this case, Dh�x� is equal to T�x� [equation

(7)], which is the `spherical-wave' solution given by Kato

(1961b). Afanas'ev & Kohn (1977) have studied the case of a

source located at a ®nite distance in a more general way and

experiments have been performed by Aristov et al. (1980).

They have observed PendelloÈsung fringes oriented in a sense

opposite to Kato's fringes.

Synchrotron sources are very far from the crystal and the

quadratic term in the argument of the exponential varies

slowly. The stationary-phase approximation is no longer

applicable and conversely it is possible to use another

approximation that turns out to be similar to the Fraunhofer

approximation in classical optics.

We can write (6) in the form

Dh�x� �
R�l

ÿl

exp��i� cos2 �B=�0L0��x2 � �2
1 ÿ 2x�1��T��1� d�1:

�8�
The �2

1 term can be neglected in (8) if

�cos2 �B=�0L0�l2 � 1) l � �1=cos �B���0L0�1=2 �9�
because the integration is limited to the interval �ÿl; l�, which

is the basis of the Borrmann triangle P0MN (Fig. 2).

Since l � t tan �B, (9) can be expressed as

t � �1=sin �B���0L0�1=2 � tlp: �10�
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Figure 2
Schematic representation of the point source and the diffracting crystal.

Figure 1
A spherical wave front can be approximated by its tangent plane in the
region where the distance is � �=2.
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Owing to the large source-to-sample distance L0, it is possible

to satisfy condition (10) for a rather large crystal thickness t

of many hundreds of micrometres, much larger than the

PendelloÈsung length �0 (tens of micrometres). Usual samples

ful®l both (10) and t>�0. This ensures that the crystal is not

`thin' and that dynamical effects are important.

If the term �2
1 is neglected, (8) becomes

Dh�x� ' exp��i� cos2 �B=�0L0�x2�

� R�l

ÿl

exp��2�i cos2 �B=�0L0�x�1�T��1� d�1

� exp��i� cos2 �B=�0L0�x2�eT��x=�0L0� cos2 �B�; �11�
where the limits of the integral can be extended to �ÿ1;�1�
since the propagator T is zero outside �ÿl; l�. The symbole indicates the Fourier transform. �x=�0L0� cos2 �B is the

`frequency' variable for this transform.

The intensity on the exit surface is the square modulus of

the Fourier transform of the propagator T [equation (11)]:

Ih�x� � jeT��cos2 �B=�0L0�x�j2; �12�
which represents (Authier & Simon, 1968) the re¯ectivity

curve

R���� � jeT��cos �B=�0����j2

of the crystal, also known as the rocking curve:

Ih�x� � R��x=L0� cos �B�: �13�
In the plane-wave dynamical theory, the re¯ectivity curve is

the angular intensity response of the crystal as a function of

the departure from Bragg angle for an incident plane wave.

Equation (8) shows that point P0, located on the exit

surface, is in¯uenced by the limited domain given by the

Borrmann triangle, MNP0, of basis 2l (see Fig. 2). It is not

in¯uenced by the incident wave outside MN. This was pointed

out by Carvalho & Epelboin (1990), who have introduced the

effective divergence �:

� � l cos �B=L0; �14�
which is the useful angular aperture of the incident beam for

any point P0 of the exit surface.

Generally, condition (1) is not ful®lled for the global

divergence �� but it may be satis®ed for the effective diver-

gence �. Physically, this means that along a segment of length l

the incident wave may be considered as a plane wave. Thus,

each point x of the exit surface sees a wave that is locally

plane, with a deviation from the Bragg position given by

�� � �x=L0� cos �B.

Thus, when condition (10) is veri®ed, we may consider the

incident wave as a locally plane wave for the diffraction

process. In such a case, the intensity pro®le along the exit

surface reproduces the angular Bragg re¯ection pro®le

(rocking curve) of the crystal.

3.2. Numerical analysis of the locally plane approximation

The locally plane wave result (11), and consequently the

validity of condition (10), can be numerically checked by

Figure 3
Computed intensity pro®le on the exit surface (a) and corresponding
rocking curve (b), Si 111 re¯ection, thickness 300 mm, energy 30 keV.
(c) Difference between (a) and (b) with the correspondence
��� x cos �B=L0.



integrating (6) directly and comparing the two results. We

have analyzed the case of Si 111, at an energy of 30 keV. In this

case, the critical-thickness value is tlp � 1188 mm. Fig. 3(a)

shows the intensity calculated for a thickness t � 300 mm,

where condition (10) is well veri®ed, together with the

theoretical intrinsic pro®le R���� (Fig. 3b). Equation (13) is

nicely veri®ed, as shown in Fig. 3(c), which shows the differ-

ence between Ih�x� and Rh, drawn as a function of the variable

�x=L0� cos �B.

The same calculation made for a crystal thickness

t � 1200 mm, which is just above the limit tlp, shows that the

approximation is still valid within a few percent (Fig. 4c).

4. Partial coherence effects

4.1. Finite source size: spatial coherence

Up to now, we have considered an ideal point source. The

®nite size of a real source implies a ®nite coherence width of

the incidence beam on the entrance surface of the crystal.

Third-generation synchrotrons are characterized by two

important features: the source is very small and the distance to

the sample is very large, which gives a very high degree of

spatial coherence. Measurements performed at ID19 at ESRF

have shown that the coherence width is of the order of 100 mm

(Cloetens et al., 1997).

Taking into account the ®nite size of the source would mean

introducing a mutual intensity function (Born & Wolf, 1983).

However, we may simplify this problem because we are mainly

interested in conditions for which the source size signi®cantly

changes the intensity pro®le along the exit surface, thus we will

just compute the convolution of the intensity pro®le of the

source with the intensity curve obtained for a point source.

The source can be described as a distribution of elementary

incoherent quasi-monochromatic sources of in®nitesimal size

d�. This is discussed, in the case of synchrotron sources, by

CoõÈsson (1995).

The beam coming from a point source shifted by " (Fig. 5)

meets the Bragg condition at a point on the entrance surface

shifted exactly by " with respect to the origin O. Let us call IS

Acta Cryst. (2000). A56, 308±316 Mocella et al. � Dynamical diffraction 311

research papers

Figure 4
The calculated intensity pro®le on the exit surface (a) and the
corresponding rocking curve (b), Si 111 re¯ection, 1200 mm thickness
and an energy of 30 keV. (c) The difference between the two curves, with
the correspondence ��� x cos �B=L0. The difference remains lower
than a few percent.

Figure 5
Effect of the source size: it can be interpreted as a shift of the point where
the beam impinges at exact Bragg incidence.
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the intensity distribution of the source. The intensity along the

exit surface, previously given by (6), becomes

Ih�x� �
R

IS�"� d"
Rxÿl

x�l

exp��i� cos2 �B=�0L0���1 ÿ "�2�

� T�xÿ �1� d�1

Rxÿl

x�l

exp�ÿ�i� cos2 �B=�0L0���2 ÿ "�2�

� T��xÿ �2� d�2: �15�
Developing the squares in the exponential arguments,

inverting the integral order and noting that "2 terms cancel

out, we get

Ih�x� �
Rxÿl

x�l

d�2

Rxÿl

x�l

exp��i� cos2 �B=�0L0���2
1 ÿ �2

2��T�xÿ �1�

� T��xÿ �2� d�1

R
IS�"� exp��2i� cos2 �B=�0L0�

� ��1 ÿ �2�"� d": �16�
The last integral is the mutual intensity function of the inci-

dent beam on the entrance surface (Born & Wolf, 1983). It is

equal to the Fourier transform of the intensity source pro®le

IS�"� using the `frequency' variable �cos2 �B=�0L0���1 ÿ �2�.
Assuming a Gaussian source pro®le of half width a, the

transform is a Gaussian of half width 1=a (the Gaussian

assumption is used only for simplicity because all other

pro®les give substantially the same results).

We may consider the last integral to be constant for small

values of �1 ÿ �2, namely if

�1 ÿ �2 <�0L0=a cos2 �B: �17�
The difference �1 ÿ �2 has an upper bound of 2l because of the

limited interval of the integration over �1 and �2 [equation

(16)].

This implies that condition (17) can be written

2l<�0L0=a cos2 �B �18�
or, equivalently, since t � l= tan �B:

t<�0L0=a sin 2�B � tsc: �19�
�0L0=a in (18) is the spatial (or transverse) coherence width at

a distance L0 from a quasi-monochromatic incoherent source

of size a, as usually de®ned in optics for a quasi-monochro-

matic incoherent extended source [Van Cittert±Zernike

theorem (Born & Wolf, 1983)].

4.2. Finite source bandwidth: temporal coherence

Let us now introduce the nonmonochromaticity of the

beam. For a given diffraction vector, the signi®cant bandwidth

is of the order of the Darwin width. We assume that the

transfer function T does not change signi®cantly in such an

interval ��. However, the position of the point where the

beam impinges at exact Bragg angle (O for �0 in Fig. 6)

changes as a function of the wavelength, because the Bragg

angle is a function of �.

This can be described using the previous formalism

assuming an incident monochromatic spherical wave, of

wavevector k � k0 ��k. The polychromaticity is included in

the modulation of the pseudo-amplitude, similarly to the

sphericity of the wave front. Thus, the incident wave is

expressed in the same way as (4), where the pseudo-amplitude

is now

Dinc
0 ��;�k� � exp��i�=�0L0��2� exp�2�i sin �B��k�: �20�

The analysis of temporal coherence can be performed simi-

larly to that of the spatial coherence, leading to an integral

analogous to (16):

Ih�x� �
Rxÿl

x�l

Rxÿl

x�l

exp��i� cos2 �B=�0L0���2
2 ÿ �2

1��T�xÿ �1�

� T��xÿ �2� d�1 d�2

Rk0��k

k0ÿ�k

I���k�

� exp�ÿ2�i sin �B��1 ÿ �2��k� d�k: �21�
In the case of a white incident beam, the last integral becomes

a � function. Then, for a white beam, the illumination on the

entrance surface is completely incoherent, as explained by

Carvalho & Epelboin (1990).

Let us consider now the general case of an incident beam

with a ®nite bandwidth �ÿ�kM;�kM�. By analogy with the

Figure 6
Effect of the polychromaticity: it can be interpreted in terms of an
equivalent source size a0.

Figure 7
The coherence requirements can be interpreted in terms of the width and
length of the wavepacket.



previous spatial coherence analysis, the integral over �k can

be considered as constant if

sin �B��1 ÿ �2�< �1=�kM� ) ��1 ÿ �2�< �1=�kM sin �B�:
�22�

Polychromaticity does not change the intensity pro®le if

2l< 1=�kM sin �B � �2
0=��M sin �B �23�

or, when expressed as a function of the thickness t,

t<�2
0=�2��M tan �B sin �B� � �0d=���M tan �B� � ttc; �24�

where d is the interplanar distance.

Condition (24), or (23), is independent of the source

distance and contains the term �2
0=��, which is the temporal

coherence length, as de®ned in classical optics.

If the locally plane wave approximation is applicable, the

strong analogy with the in¯uence of the source size is evident.

In fact, the pseudo-amplitude on the exit surface (20) is, for a

given �k:

Dh x;�k� � � exp
i� cos2 �B

�0L0

x2

� �eT cos2 �B

�0L0

xÿ sin �B�k

� �
;

�25�
where the phase term in (20) results in a translation in the

Fourier transform (25).

The same result as (24) can be obtained (Mocella et al.,

1999) by using the differential expression of the Bragg law and

considering a `virtual' source size a0, given by

a0 � L0��� � L0���=�0� tan �B: �26�
To summarize, we may now say that, when conditions (19) and

(24) are ful®lled, the incident wave can be considered as

perfectly coherent for diffraction processes in a perfect crystal.

In this case, we can consider the incident wave as perfectly

monochromatic and emitted by a point source (4).

5. Locally plane wave: coherence requirements and
PendelloÈsung fringes

The coherence requirements (19) and (24) can be `physically'

understood considering the case of a locally plane wave, as

analyzed in x3. The intensity pro®le (12) shows oscillations

that are the well known plane-wave PendelloÈsung fringes.

They arise from the interference of two wave®elds inside the

crystal, as described by the dynamical theory (see e.g. Ewald,

1917; Laue, 1931; Batterman & Cole, 1964; Pinsker, 1978). It is

obvious that the interfering beams must be coherent. As

pointed out in previous sections, a point on the exit surface is

in¯uenced by the incident wave only along the basis of the

Borrmann fan. Condition (18) means that the lateral (spatial)

coherence of the incident beam, �0L0=a, has to be larger than

the basis of the Borrmann fan projected orthogonally on the

incidence direction (2l cos �B):

��0L0=a�> 2l cos �B: �27�
The corresponding condition for the temporal (or longi-

tudinal) coherence width of the incident beam (24) means that

Acta Cryst. (2000). A56, 308±316 Mocella et al. � Dynamical diffraction 313

research papers

Figure 9
Experimental set-up.

Figure 8
In classical optics, equation (6) represents the diffraction ®gure in a plane
at a distance L0=cos �B of an object illuminated by a plane wave. The
object is not merely a slit but has a transmission function T���.
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�2
0=�� has to be larger than the basis of the Borrmann fan

projected along the direction of propagation �2l sin �B�:
�2

0=��> 2l sin �B: �28�
We can summarize by saying that conditions (27) and (28)

represent the width and the length of the incident wave

packet. If these conditions are not ful®lled, interferences are

not possible and the PendelloÈsung fringes disappear (Fig. 7).

As for classical optics, it is also possible to look at the

coherence conditions in terms of simple fringes blurring.

Outside the area close to its center, the intensity pro®le (13) is

made of regularly spaced fringes, with a fringe spacing Fsp

given by the expression for R (Pinsker, 1978):

Fsp � �L0=t sin�2�B�: �29�
To be able to see the fringes, the source size and the ®nite

bandwidth of the source must be small enough. An elementary

source located at point O" of coordinate " (Fig. 5) produces an

intensity pro®le, on the exit surface, displaced by ". The

different sources are incoherent with each other, thus the

intensity pro®le is made of the superposition of all pro®les

produced by the different elementary sources. To be able to

distinguish the fringe structure, the maximum displacement,

i.e. the source size a, must be smaller than the fringe spacing

(29):

a<�L0=t sin�2�B�: �30�
This condition is identical to (19).

Similarly, the ®nite bandwidth �� of the incident beam

induces a displacement of the point at exact Bragg position

(Fig. 6) and can be linked to a virtual source of ®nite size a0

[equation (26)], expressing the same condition as (24).

6. Locally plane wave and Fraunhofer approximation

It should be noticed that (6) has the form of a convolution

integral that describes Fresnel diffraction in classical optics

(Born & Wolf, 1983). In this case, T�x� would be the trans-

mission function of a transparent object of limited lateral size

` � 2l illuminated by a plane monochromatic wave of wave-

length �; Dh�x� would be the wave amplitude in an observation

plane at distance L � L0=cos �B (Fig. 8).

The Fresnel diffraction phenomenon contains two limiting

cases:

(i) If L� `2=�, one speaks of Fraunhofer diffraction. The

convolution integral is then reduced to the Fourier transform

of the transmission function of the object T�x�.
(ii) If L! 0, it can be shown that the convolution kernel

exp�i��xÿ ��2=�0L� tends to a � distribution ��xÿ ��, with the

obvious meaning that the diffraction pattern is then identical

to the transmission function of the object T�x�.
Returning to our problem of X-ray diffraction, we underline

that the locally plane approximation corresponds to the

limiting case (1) of classical optics, namely to Fraunhofer

diffraction.

Condition (9) can be rewritten as a Fraunhofer diffraction

condition:

L> l2=�:

Similarly, Kato's spherical wave corresponds to the limiting

case (ii) of classical optics.

The discussion by Afanas'ev & Kohn (1977) can be

understood as the analysis of the transition between these two

limiting cases.

7. Experimental results

Experiments have been performed at the ID19 beamline at

the ESRF (source-to-sample distance L0 � 145 m) to verify

the above theoretical conclusions. To satisfy the good mono-

chromaticity requirement, the incident beam was mono-

chromated using the 333 re¯ection of the silicon nondispersive

double-crystal monochromator installed on the line. The

monochromator is set for (111) re¯ection at 10 keV and the

sample itself was a silicon crystal oriented for (111) re¯ection

Figure 10
Photographic image for a silicon crystal thickness of 150 mm (111
re¯ection and 30 keV energy) under the locally plane wave condition.
The recorded intensity reproduces the well known pro®le of the rocking
curve (b), even if the nonlinearity of the photographic ®lm used does not
permit a precise comparison.



at 30 keV �� � 3:764 AÊ , �B � 3:44��, corresponding to the

third harmonic of the monochromator (Fig. 9). We chose a

vertical setting because the smallest size of the source is in the

vertical direction and is estimated approximately as

a � 50 mm.

In this condition we get, according to (10), (19) and (24):

tlp � 1188 mm; �31a�
tsc � 912 mm; �31b�
ttc � 433 mm: �31c�

We have choosen a sample of 150 mm thickness, which satis®es

all the requirements t< tlp; tsc; ttc. The observed image (Fig. 10)

shows immediately that the recorded pro®le reproduces that

of the rocking curve. Actually, the ®lm saturation does not

permit a precise comparison in intensity.

The measured fringe separation, far from the center, where

it becomes regular, is 305 mm, which is in very good agreement

with the calculated value (29), Fsp � 307 mm. The small

discrepancy may arise from the inaccuracy of the sample-

thickness measurement: our method gives a more accurate

thickness value.

In order to observe the changes in the pro®le with

increasing thicknesses, we rotate the sample around the

diffraction axis h � �111� by an angle �. Thus, the effective

thickness teff of the sample increases as 1= cos �: teff � t= cos �
(Fig. 11).

For a larger thickness, the fringe separation becomes

smaller and conversely conditions (10), (19) and (24), espe-

cially the last one related to the temporal coherence, become

more critical.

Fig. 12 shows the images taken for various rotation angles.

For � � 60�, teff � 300 mm is double the original one; the

fringe separation is now about 150 mm. Condition (31c) is no

longer ful®lled. The visibility of the fringes decreases owing to

the lack of coherence. The fringe visibility could be used as an

estimation of the coherence properties of the source, similar to

the techniques that make use of ultra-plane waves (Ishikawa,

1988).

8. Conclusions

We have shown that the sphericity of the wave front of the

incident beam must be taken into account also for third-

generation synchrotron sources.

The incident wave cannot be

considered as a truly plane

wave. However, in some cases,

the incident wave can be

considered as `locally plane'. In

such cases, one can establish a

local correspondence between

the position along the surface

and the angular deviation from

the exact Bragg condition. The

diffracted intensity on the ®lm

reproduces the angular rocking-

curve pro®le of the crystal. The

approximation of the locally

plane wave allows interpreta-

tion of the coherence require-

ments for the incident beam.

The coherence width and the

coherence length of the incident

wave packet must be larger than

the width of the basis of the

Borrmann triangle, in order to

observe PendelloÈsung inter-

ference fringes along the exit

surface.
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Figure 11
Rotating the crystal around the diffraction axis h changes the crystal
thickness seen by the incident beam by a factor 1=cos �.

Figure 12
Images taken for various rotation angles �, corresponding to various effective thicknesses teff. Rocking-curve
oscillations are narrower for increasing thicknesses. When the coherence condition is no longer ful®lled
(� � 70; 75�), the visibility of the fringes decreases.
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The locally plane wave condition is equivalent to the

Fraunhofer regime in classical optics.

We have shown experimental evidence of the locally plane

wave phenomenon. Since the fringes are very sensitive to any

deformation in the crystal or any change in the phase pro®le of

the incident wave, this experiment can be used for high-

precision diffraction studies. We will show in another paper

how it can be used to study local deformation in crystals or

phase objects which can be introduced in part of the incoming

beam.

The authors wish to thank J. HaÈrtwig and J. Baruchel for

useful suggestions about the experimental set-up and their

help in performing experiments. V. Mocella is indebted to the

Istituto Nazionale per la Fisica della Materia (INFM) for his

PhD fellowship.

References

Afanas'ev, A. M. & Kohn, V. G. (1977). Sov. Phys. Solid State, 19,
1035±1040.

Aristov, V. V., Polovinkina, V. I., Afanas'ev, A. M. & Kohn, V. G.
(1980). Acta Cryst. A36, 1002±1013.

Authier, A. & Simon, D. (1968). Acta Cryst. A24, 517±526.
Batterman, B. W. & Cole, H. (1964). Rev. Mod. Phys. 36, 681±717.
Born, M. & Wolf, E. (1983). Principle of Optics, 6th ed. Oxford:

Pergamon Press.
Carvalho, C. A. M. & Epelboin, Y. (1990). Acta Cryst. A46,

449±459.
Cloetens, P., Guigay, J. P., De Martino, C., Baruchel, J. & Shlenker, M.

(1997). Opt. Lett. 22±14, 1059±1061.
CoõÈsson, R. (1995). Appl. Opt. 34, 904±908.
Ewald, P. P. (1917). Ann. Phys. (Leipzig), 54, 519±597.
Guigay, J. P. (1999). Acta Cryst. A55, 561±563.
Ishikawa, T. (1988). Acta Cryst. A44, 496±499.
Kato, N. (1960). Acta Cryst. 13, 349±356.
Kato, N. (1961a). Acta Cryst. 14, 526±532.
Kato, N. (1961b). Acta Cryst. 14, 627±636.
Kato, N. & Lang, A. R. (1959). Acta Cryst. 12, 787±794.
Laue, M. (1931). Engeb. Exakt. Naturwiss. 10, 133±158.
Mocella, V., Guigay, J. P., Epelboin, Y., HaÈrtwig, J., Baruchel, J. &

Mazuelas, A. (1999). J. Phys. D: Appl. Phys. 32, A88±A91.
Pinsker, Z. (1978). Dynamical Scattering of X-rays in Crystals. Berlin:

Springer.
Takagi, S. (1969). J. Phys. Soc. Jpn, 26, 1239±1253.


